当前位置: > A、B是椭圆x^2/9+y^2/4=1与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大...
题目
A、B是椭圆x^2/9+y^2/4=1与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大

提问时间:2021-03-27

答案
OA=3,OB=2.设P(x,y),则
面积=(2x+3y)/2=x+(3y/2).
设x=3cosθ,y=2sinθ,θ为任意实数,则
x+(3y)/2=3cosθ+3sinθ=3√2sin(θ+φ),
所以,面积最大值=3√2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.