当前位置: > F1 F2为椭圆焦点 P为椭圆上任意一点 ∠F1 P F2= 60° 求离心率e取值范围...
题目
F1 F2为椭圆焦点 P为椭圆上任意一点 ∠F1 P F2= 60° 求离心率e取值范围
½

提问时间:2021-03-27

答案
设PF1=x,由椭圆第二定义,PF2=2a-x
由余弦定理
[x2+(2a-x)2-4c2]/[2x*(2a-x)]=1/2
化简,得
3x2-6ax+4a2-4c2=0
令f(x)=3x2-6ax+4a2-4c2
因为∠F1 P F2= 60° ,P为椭圆上任意点

f(x)在(-a,a)上有解(显然x=a是不行的,剔除了)
又f(x)对称轴为x=a
因此 f(x)在(-a,a)上有解
等价于 f(-a)>0,f(a)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.