题目
1.在正方体AC¹中,E为AB¹上一点,F在BD上,且B¹E=BF.求证:EF‖ 面BB¹C¹C (没有图,根据文字自己画的)
2.三棱锥A-BCD被平面所截,截面为平行四边形EFGH.求证:CD‖面EFGH
(一样,也没图)
还有一个:
3.已知E,F,G,H,顺次喂空间四边形,四条边AB,BC,CD,DA的中点,且EG=3,FH=4,求AC²+BD²= ________
2.三棱锥A-BCD被平面所截,截面为平行四边形EFGH.求证:CD‖面EFGH
(一样,也没图)
还有一个:
3.已知E,F,G,H,顺次喂空间四边形,四条边AB,BC,CD,DA的中点,且EG=3,FH=4,求AC²+BD²= ________
提问时间:2021-03-26
答案
1、
令F1在B1D1上,且B1F1=BF
考察△AB1D1,显然AB1=B1D1
因为B1E=B1F1,且∠AB1D1=∠EB1F1,所以△EB1F1∽△AB1D1
所以同位角相等,EF1‖AD1
又显然AD1‖面BB1C1C,所以EF1‖面BB1C1C
显然BD‖B1D1,即BF‖B1F1,又B1F1=BF,所以BFF1B1是平行四边形,
FF1‖BB1,所以FF1‖面BB1C1C,
△EFF1‖面BB1C1C,所以EF‖面BB1C1C
2、这道题似乎和怎么截是有关的……
3、结果为50
即使在空间中中位线也可以用,得到EFGH为平行四边形,且EF=AC/2,FG=BD/2,
记得没错的话平行四边形对角线平方和等于二倍的相邻两边平方和也是定理
就是说AC²+BD²=4EF²+4FG²=2(2EF²+2FG²)=2(EG²+FH²)=2(3²+4²)=50
令F1在B1D1上,且B1F1=BF
考察△AB1D1,显然AB1=B1D1
因为B1E=B1F1,且∠AB1D1=∠EB1F1,所以△EB1F1∽△AB1D1
所以同位角相等,EF1‖AD1
又显然AD1‖面BB1C1C,所以EF1‖面BB1C1C
显然BD‖B1D1,即BF‖B1F1,又B1F1=BF,所以BFF1B1是平行四边形,
FF1‖BB1,所以FF1‖面BB1C1C,
△EFF1‖面BB1C1C,所以EF‖面BB1C1C
2、这道题似乎和怎么截是有关的……
3、结果为50
即使在空间中中位线也可以用,得到EFGH为平行四边形,且EF=AC/2,FG=BD/2,
记得没错的话平行四边形对角线平方和等于二倍的相邻两边平方和也是定理
就是说AC²+BD²=4EF²+4FG²=2(2EF²+2FG²)=2(EG²+FH²)=2(3²+4²)=50
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一个长方体表面积是160平方厘米,恰好能切成两个完全相同的正方体,每个正方体的体积是多少立方厘米?
- 2为什么化合价数越大的元素,提供原子或离子的个数越少
- 3My friend is____China.A.to B.at C.in D.on
- 4三个原读什么?
- 5如图所示,一根细绳悬挂一个半径为r米、质量为m千克的半球,半球的底面与容器底部紧密接触,此容器内液体的密度为ρ千克/米3,高度为H米,大气压强为p0帕,已知球体的体积公式是V=4πr3
- 6(X-80)(X-20)=80(X+20)
- 7时间过得真快啊!六年的小学生活就要结束了.回想往事,我们会用 来感概时光流
- 8要炼惊人艺,须下苦功夫 的解释
- 9关于高一的二次函数问题
- 10What will you do?Where will you meet?When will you meet?
热门考点