当前位置: > 怎样证明:一棵有n个叶子的哈夫曼树共有2n-1 个结点?...
题目
怎样证明:一棵有n个叶子的哈夫曼树共有2n-1 个结点?

提问时间:2021-03-21

答案
第1次必定是2个叶子组成二叉树,产生1新结点,接下来有2种情况:
1.此新结点与原剩下的叶子再组成二叉树又产生1新结点,这样就只有第1次时由2个叶子产生1新结点,以后每次由1叶子与新结点产生新结点,故n个叶子共有2n-1个结点.
2.剩下的叶子中又有2个叶子(比第1次产生的新结点权小)结合产生新结点,其它类似,那么必然会由2个都是新结点再产生新结点,所以实际上数量与第1种一样,共有2n-1个.
具体证明用一个构造哈夫曼树的算法.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.