题目
是否存在整数a,b,c使等式(9/8)^a(10/8)^b(16/15)^c=2000成立?若存在,求出a,b,c,若不存在,请说明理由
加油
加油
提问时间:2021-03-20
答案
(9/8)的a次方*(10/9)的b次方*(16/15)的c次方
=9^a*8^(-a)*10^b*9^(-b)*16^c*15^(-c)
=3^2a*2^(-3a)*2^b*5^b*3^(-2b)*2^4c*3^(-c)*5^(-c)
=2^(-3a+b+4c)*3^(2a-2b-c)*5^(b-c)
因为(9/8)的a次方*(10/9)的b次方*(16/15)的c次方=2
即:2^(-3a+b+4c)*3^(2a-2b-c)*5^(b-c)=2
所以,3和5的指数都必须是0,而2的指数是1.
因此,可以得到一个关于a,b,c的三元一次方程组.
-3a+b+4c=1,2a-2b-c=0,b-c=0
解得:a=3,b=c=2,
=9^a*8^(-a)*10^b*9^(-b)*16^c*15^(-c)
=3^2a*2^(-3a)*2^b*5^b*3^(-2b)*2^4c*3^(-c)*5^(-c)
=2^(-3a+b+4c)*3^(2a-2b-c)*5^(b-c)
因为(9/8)的a次方*(10/9)的b次方*(16/15)的c次方=2
即:2^(-3a+b+4c)*3^(2a-2b-c)*5^(b-c)=2
所以,3和5的指数都必须是0,而2的指数是1.
因此,可以得到一个关于a,b,c的三元一次方程组.
-3a+b+4c=1,2a-2b-c=0,b-c=0
解得:a=3,b=c=2,
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点