当前位置: > 已知:如图,在△ABC中,分别延长中线BE、CD至N、M,使EN=EB,DM=DC,求证:点M、A、N三点在同一条直线上....
题目
已知:如图,在△ABC中,分别延长中线BE、CD至N、M,使EN=EB,DM=DC,求证:点M、A、N三点在同一条直线上.

提问时间:2021-03-20

答案
证明:连接AM、AN,
∵DM=DC,∠ADM=∠BDC,AD=DB,
∴△AMD≌△BCD.
∴∠MAD=∠DBC.
同理可证:∠NAE=∠ECB,
∵∠BAC+∠DBC+∠ECB=180°,
∴∠MAD+∠BAC+∠NAE=180.
∴点M、A、N三点在同一条直线上.
连接AM、AN,证明△AMD≌△BCD、△ANE≌△CBE,得出∠MAD=∠DBC、∠NAE=∠ECB,得出∠MAD+∠BAC+∠NAE=180,从而证明出结论.

全等三角形的判定与性质.

本题考查了全等三角形的判定和性质;作出辅助线,考虑到证明∠MAD+∠BAC+∠NAE=180,是解答问题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.