当前位置: > 圆锥曲线数学题...
题目
圆锥曲线数学题
已知P是椭圆X2+2Y2=18上的点,F1、F2分别是椭圆的左、右焦点,若△F1PF2的面积为3根号3,则|PF1|·|PF2|的值为多少?
怎么算?

提问时间:2021-03-19

答案
X2+2Y2=18,即X2/18+Y2/9=1,
a²=18,b²=9,则c²=9,c=3,
|F1F2|=2c=6,设P(x0,y0),
S△F1PF2=1/2*|F1F2|*|y0|=3|y0|,
由已知得 3|y0|=3√3,则y0=√3,
y0²=3,这时x0²=12.
由焦半径公式知,|PF1|=a+ex0,|PF2|=a-ex0,e=c/a=3/3√2=1/√2.
则|PF1|·|PF2|=(a+ex0)(a+ex0)
=a²-e²x0²=18-(1/√2)²*12=12.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.