题目
证明题求定积分
设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间a到x,X属于(a,b]}试证明F(X)在区间(a,b]上恒有F(X)的导数大于等于0
设函数F(X)在区间[a,b]上连续,单调增加,F(X)=1/(x-a)倍的{定积分f(t)dt,积分区间a到x,X属于(a,b]}试证明F(X)在区间(a,b]上恒有F(X)的导数大于等于0
提问时间:2021-03-19
答案
将题中函数F(X)在区间[a,b]上连续,单调增加,改为f(x)在区间[a,b]上连续,单调增加.利用乘积的求导公式得dF/dx=(-1/(x-a)^2)∫f(t)dt+1/(x-a)f(x)(积分区间a到x)=f(x)/(x-a)-(1/(x-a)^2)∫f(t)dt因为f(x)在区间[a,b]单...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点