当前位置: > 关于高数(一)中二重积分的计算问题...
题目
关于高数(一)中二重积分的计算问题
1.求由平面x=0 y=0 x+y=1 所围成的柱体被平面z=0及抛物面x^2+y^2=6-z截得的立体的体积
2.计算由四个平面x=0 y=0 x=1 y=1所围成的柱体被平面z=0 2x+3y+z=6截得的立体的体积
难点:我不知道该如何处理z这一变量,若是只含有x y两个变量的问题倒是不难,希望有清楚的朋友帮帮忙,万分感激!
两道题很类似,一个解不出另一个也没戏!
希望朋友们倾囊相助~

提问时间:2021-03-16

答案
利用二重积分计算体积,就是二重积分的几何意义,把立体看作是一个曲顶柱体,曲顶是一个曲面z=f(x,y),底面是xy坐标面上的闭区域D,则体积V=∫∫(D)f(x,y)dxdy.
图形不一定要画,主要是分析出曲顶和底面.
1、柱体的母线平行于z轴,所以柱体被平面z=0和抛物面x^2+y^2=6-z截得的立体就是一个曲顶柱体,底面就是柱体的准线x=0,y=0,x+y=1围成的一个xy坐标面上的区域D,而曲顶就是抛物面z=6-(x^2+y^2),所以体积
V=∫∫(D) [6-(x^2+y^2)]dxdy=∫(0→1)dx∫(0→1-x) [6-(x^2+y^2)]dy=17/6
2、柱体的母线平行于z轴,所以柱体被平面z=0和2x+3y+z=6截得的立体就是一个曲顶柱体,底面就是柱体的准线x=0,y=0,x=1,y=1围成的一个xy坐标面上的区域D,而曲顶就是平面z=6-2x-3y,所以体积
V=∫∫(D) [6-2x-3y]dxdy=∫(0→1)dx∫(0→1) [6-2x-3y]dy=7/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.