题目
如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=a.
(1)求证:AD⊥B1D;
(2)求证:A1C∥平面AB1D;
(3)求点A1到平面AB1D的距离.
(1)求证:AD⊥B1D;
(2)求证:A1C∥平面AB1D;
(3)求点A1到平面AB1D的距离.
提问时间:2020-12-13
答案
(1)证明:∵ABC-A1B1C1是正三棱锥,∴BB1⊥平面ABC,∴BB1⊥AD,
在正△ABC中,∵D是BC的中点,∴AD⊥BD.BB1∩BD=B,
∴AD⊥平面BB1D,∴AD⊥B1D.(4分)
(2)连接DE.AA1=AB,四边形A1ABB1是正方向,∴E是A1B的中点,又D是BC的中点,
∴DE∥A1C,∵DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(8分)
(3)VA1−AB1D=VB1−A1AD,所以
•
•
在正△ABC中,∵D是BC的中点,∴AD⊥BD.BB1∩BD=B,
∴AD⊥平面BB1D,∴AD⊥B1D.(4分)
(2)连接DE.AA1=AB,四边形A1ABB1是正方向,∴E是A1B的中点,又D是BC的中点,
∴DE∥A1C,∵DE⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(8分)
(3)VA1−AB1D=VB1−A1AD,所以
1 |
3 |
1 |
2 |