题目
提问时间:2021-03-16
答案
设甲乙两数的最大公因数为p,
甲数为pm,乙数为pn,m、n互质,则两数的最小公倍数为 pmn,
于是得pm+pn=80,整理是P(m+n)=80,
pmn-p=80,整理是P(mn-1)=80,
=1,
整理是mn-1=m+n,
mn-1-m-n=0,
两边同时加上2得:mn-n-m+1=2,
整理n(m-1)-m+1=2,
整理n(m-1)-(m-1)=2,
整理(m-1)(n-1)=2×1,
解得m-1=2,n-1=1;或n-1=2,m-1=1,
结果m=2,n=3,或m=3,n=2.
把结果代入p×(2+3)=80,解得p=16,
一个数是:16×2=32,
另一个数是:16×3=48,
两数乘积为:32×48=1536
故答案为:1536.
甲数为pm,乙数为pn,m、n互质,则两数的最小公倍数为 pmn,
于是得pm+pn=80,整理是P(m+n)=80,
pmn-p=80,整理是P(mn-1)=80,
p(mn−1) |
P(m+n) |
整理是mn-1=m+n,
mn-1-m-n=0,
两边同时加上2得:mn-n-m+1=2,
整理n(m-1)-m+1=2,
整理n(m-1)-(m-1)=2,
整理(m-1)(n-1)=2×1,
解得m-1=2,n-1=1;或n-1=2,m-1=1,
结果m=2,n=3,或m=3,n=2.
把结果代入p×(2+3)=80,解得p=16,
一个数是:16×2=32,
另一个数是:16×3=48,
两数乘积为:32×48=1536
故答案为:1536.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1若x的4次方+y的4次方=25,x的平方-xy的平方=-6,求x的4次方-y的4次方+3xy的平方-x的平方y+2y的4次方的值.
- 2一辆汽车从甲地开往乙地,每小时行80千米,5小时到达.如果要4小时到达,每小时需要行使多少千米? ①这道题里的_是一定的,_和_成_比例关系.所以两次行使的_和_的_是相等的. ②解:
- 3看到什么花刚刚开放,就知道大致是几点钟,这是不是很有趣?[换个说法意思不变】
- 4一道初三句型转换
- 5等腰三角形两腰上的高相交所成的钝角为100°,则顶角的度数为_度,底角的度数为_度.
- 6唐代科举制的资格限制说明了什么
- 7一条河宽D=10m 水流速度V水=3m/
- 8Linda,with a lot of flowers,(come)from Beijing
- 9一项工程,甲工程队单独做要20天完成,乙工程队单独做要30天完成,如果甲乙合作,几天可完成总工程的三分之二?
- 10他打算明天去买衣服的英语怎么写
热门考点
- 1关于初二数学题
- 2已知a在数轴上的位置如图,把a,a的相反数,a的倒数,a的绝对值,a的负倒数按从小到大的顺序连起来 —-1——a—
- 3英语翻译
- 4如何提高阅读理解的能力
- 5You may give the dictionary to ____you think needs it neccessarily
- 6如图,在正方体ABCD-A1B1C1D1中,E是B1C1的中点,O是正方形A1B1C1D1的中心,连接AO,CE,求异面直线AO与CE所成的角的余弦.
- 7怎样算科学计数法的负数次方
- 8用描述法表示:
- 9英语翻译
- 10张老师买4枝钢笔和9枝圆珠笔,一共用去52.5元.已知圆珠笔的单价是钢笔的1/3.每枝钢笔多少钱,圆珠笔呢?