当前位置: > 块对角矩阵的秩是各个对角块的秩之和吗?如何证明....
题目
块对角矩阵的秩是各个对角块的秩之和吗?如何证明.
块对角矩阵的秩是各个对角块的秩之和吗?如何证明。
A为行满秩矩阵,则必存在列满秩矩阵B,使得AB为单位阵。如何证明?

提问时间:2021-03-16

答案
1.块对角矩阵的秩是各个对角块的秩之和
考虑各个分块的极大无关组,扩充为列向量组,合并后仍线性无关
2.设A为m×n矩阵,R(A)=m
所以A的列秩 = m
所以任一m维列向量都可由A的列向量组线性表示
特别地有:Em的列向量都可由A的列向量组线性表示
故存在矩阵nxm矩阵B,满足 Em = AB.
又 m=r(Em)=r(AB)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.