当前位置: > 设函数f(x)在闭区间【0,2a】上连续,且f(0)=f(2a),试证方程f(x)=f(x+a)在闭区间【0,a】上至少有一个实根...
题目
设函数f(x)在闭区间【0,2a】上连续,且f(0)=f(2a),试证方程f(x)=f(x+a)在闭区间【0,a】上至少有一个实根

提问时间:2021-03-14

答案
设F(x)=f(x+a)-f(x),则F(x)在[0 a]上连续
所以F(a)F(0)=[f(2a)-f(a)][f(a)-f(0)],又f(2a)=f(0)
所以F(a)F(0)=[f(0)-f(a)][f(a)-f(0)]=-[f(a)-f(a)]^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.