当前位置: > 不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为(  ) A.(-∞,-1]∪[4,+∞) B.(-∞,-2]∪[5,+∞) C.[1,2] D.(-∞,1]∪[2,+...
题目
不等式|x+3|-|x-1|≤a2-3a对任意实数x恒成立,则实数a的取值范围为(  )
A. (-∞,-1]∪[4,+∞)
B. (-∞,-2]∪[5,+∞)
C. [1,2]
D. (-∞,1]∪[2,+∞)

提问时间:2021-03-14

答案
因为|x+3|-|x-1|≤4对|x+3|-|x-1|≤a2-3a对任意x恒成立,
所以a2-3a≥4即a2-3a-4≥0,
解得a≥4或a≤-1.
故选A.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.