当前位置: > 定义在R上的函数f(x),对任意的x y属于R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)=0,求证f(x)是偶函数...
题目
定义在R上的函数f(x),对任意的x y属于R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)=0,求证f(x)是偶函数

提问时间:2021-03-13

答案
步骤如下
取x=0有
f(y)+f(-y)=2f(0)f(y)
f(0)=1,所以 f(y)+f(-y) = 2f(y)
即 f(-y) = f(y)
所以f是偶函数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.