题目
已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.
(1)求证:四边形AEPM为菱形;
(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?
(1)求证:四边形AEPM为菱形;
(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?
提问时间:2021-03-11
答案
(1)证明:∵EF∥AB,PM∥AC,
∴四边形AEPM为平行四边形.
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∵AD⊥BC(三线合一的性质),
∵∠BAD=∠EPA,
∴∠CAD=∠EPA,
∵EA=EP,
∴四边形AEPM为菱形.
(2)P为EF中点时,S菱形AEPM=
S四边形EFBM
∵四边形AEPM为菱形,
∴AD⊥EM,
∵AD⊥BC,
∴EM∥BC,
又∵EF∥AB,
∴四边形EFBM为平行四边形.
作EN⊥AB于N,则S菱形AEPM=EP•EN=
EF•EN=
S四边形EFBM.
∴四边形AEPM为平行四边形.
∵AB=AC,AD平分∠CAB,
∴∠CAD=∠BAD,
∵AD⊥BC(三线合一的性质),
∵∠BAD=∠EPA,
∴∠CAD=∠EPA,
∵EA=EP,
∴四边形AEPM为菱形.
(2)P为EF中点时,S菱形AEPM=
1 |
2 |
∵四边形AEPM为菱形,
∴AD⊥EM,
∵AD⊥BC,
∴EM∥BC,
又∵EF∥AB,
∴四边形EFBM为平行四边形.
作EN⊥AB于N,则S菱形AEPM=EP•EN=
1 |
2 |
1 |
2 |
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1《桃花源记》这个故事具有传奇色彩,请说说奇在哪里?
- 2苏轼、苏辙是双胞胎?
- 3一个长方形的面积是256车方厘米,如果把长除以4,宽乘4,这个长方形就变成了正方形.这个正方形的面积是多少?它的边长是多少?
- 4某仪器有三个灯泡,烧坏第一、二、三个灯泡的概率分别是0.1,0.2,0.3,并且相互独立.
- 5已知函数f(x)=sinx+cosx,若f(x)=2f(-x),求1+sin平方x分之cos平方x-sinxcosx的值
- 6表达惋惜之情的诗句,急
- 7设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn,满足S5S6+15=0,则d的取值范围是_.
- 8不定式
- 9西游记里的好词好句好段,以及读后感 320字
- 10你非我良人、怎知我情深?是什么意识?