当前位置: > 函数y=√3sinx+cosx,x∈[-π/2,π/2]的最大值是...
题目
函数y=√3sinx+cosx,x∈[-π/2,π/2]的最大值是
y=√3sinx+cosx
=2sin(x+A),(其中tanA=1/√3,即A=π/6)
=2sin(x+π/6)
因为x∈[-π/2,π/2]
所以(x+π/6)∈[-π/3,(2π)/3]
所以y(max)=2
但是我最后怎么算出来一会是等于1,一会又等于√3呢?

提问时间:2021-03-05

答案
(x+π/6)∈[-π/3,(2π)/3]
sinx在(-π/3,π/2)递增
(π/2,2π/3)递减
所以最大是sinπ/2=1
所以最大值是2×1=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.