当前位置: > 设η1η2.,ηs是方程组AX=b(b≠0)的解向量,若K1η1+K2η2+.Ksηs也是Ax=b的解,证明K1+K2+...+Ks=1...
题目
设η1η2.,ηs是方程组AX=b(b≠0)的解向量,若K1η1+K2η2+.Ksηs也是Ax=b的解,证明K1+K2+...+Ks=1

提问时间:2021-03-04

答案
由已知
A(K1η1+K2η2+.Ksηs)
= K1Aη1+K2Aη2+.KsAηs
= K1b+K2b+...+Ksb
= (K1+...+Ks)b
= b
所以 K1+K2+...+Ks=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.