当前位置: > 如图.在△ABC中,E是AB的中点,D是AC上的一点,且AD:DC=2:3,BD与CE交于F,S△ABC=40,求SAEFD....
题目
如图.在△ABC中,E是AB的中点,D是AC上的一点,且AD:DC=2:3,BD与CE交于F,S△ABC=40,求SAEFD

提问时间:2021-03-04

答案
取AD的中点G,并连接EG在△ABD中,E是AB的中点,由题知EG∥BD.又CD:DG=3:1,
从而,在△CEG中,CF:FE=CD:DG=3:1,
∴S△DFC:S△DFE=3:1.
设S△DEF=x,则S△DFC=3x,S△DEC=4x.
由于AD:DC=2:3,
∴S△EAD:S△ECD=2:3,
∴S△EAD=
2
3
S△DEC=
8
3
x,
S△ACE=
8
3
x+4x=
20
3
x,
又因为E是AB中点,
所以S△ACE=
1
2
S△ABC=20,
20
3
x=20,
解得x=3,即S△DEF=3,
∴S△ADE=
8
3
x=8,
∴S▱AEFD=S△ADE+S△DEF=8+3=11.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.