当前位置: > 关于戴德金分割的一点疑问...
题目
关于戴德金分割的一点疑问
戴德金在定义无理数时.提出了3类集合.一类是小于2的有理数为上集.大于等于2的有理数为下集(其他两类略).并且指出小于2的有理数集是没有上确界的.但是根据极限定义.小于2的有理数与2无限接近其差小于任何正数,那他们最终必然相等.即下集将和上集重合.但若重合那与我们的定义又矛盾了.
叙述中有点错误。不过大家应该能够理解。二楼的,无限接近最终不是能够相等吗?希拉里追乌龟不就是这个样子吗?二者之间的距离无限缩小最终相等。再如 0.999...=1.0000这不也是个很好的证明吗?什么近似相等,大哥你对极限的理解我不赞同啊。你在哪里?

提问时间:2021-03-04

答案
是无限接近而不是相等 或者说近似相等
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.