当前位置: > 当n趋于无穷时3^n*n!/n^n的极限是多少?...
题目
当n趋于无穷时3^n*n!/n^n的极限是多少?

提问时间:2021-03-04

答案
可以证明 当n趋于无穷时n^n/(3^n*n!)的极限 = 0
证明如下:a(n)=n^n/(3^n*n!),考虑级数 ∑a(n) 的敛散性
a(n+1)/a(n) = 1/3*(1+1/n)^n < 1/3 *e (自然常数)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.