当前位置: > lim x趋向0[e^(x^2)-e^(2-2cosx)]/x^4 答案是1/12...
题目
lim x趋向0[e^(x^2)-e^(2-2cosx)]/x^4 答案是1/12

提问时间:2021-03-04

答案
lim(x→0) [e^(x^2)-e^(2-2cosx)]/x^4
=lim(x→0) [e^(x^2)-e^2/e^(2cosx)]/x^4
=lim(x→0) [e^(x^2)*e^(2cosx)-e^2]/[e^(2cosx)*x^4]
=lim(x→0) [e^(x^2)*e^(2cosx)-e^2]/[e^2*x^4]
=lim(x→0) [e^(x^2+2cosx)-e^2]/[e^2*x^4] (0/0)
=lim(x→0) [e^(x^2+2cosx)*(2x-2sinx)]/[4e^2*x^3]
=lim(x→0) [e^2*(2x-2sinx)]/[4e^2*x^3]
=lim(x→0) (x-sinx)/[2x^3] (0/0)
=lim(x→0) (1-cosx)/(6x^2)
=lim(x→0) (x^2/2)/(6x^2)
=1/12
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.