题目
请证明一下摩莱三角形,
提问时间:2021-03-03
答案
AE CE交E
BD CD交D
AF BF交F 记A=3α,B=3β,C=3γ,AE=m,AF=n,△ABC的三边长为a、b、c.
由于3α+3β+3γ=180°.
所以α+β+γ=60°.α+β=60°-γ
而nsin(α+β)=csinβ
所以n=csinβ/sin(α+β)=csinβ/sin(60-γ)
类似地m=bsinγ/sin(60-β)
在△ABC中有bsin3γ=csin3β,
从而
m/n
=(sin3β*sinγ*sin(60-γ))/(sin3γ*sinβ*sin(60-β))
=(sin(60+β))/(sin(60+γ))
由于α+β+γ=60°.
所以存在以60°+β,60°+γ和α为内角的三角形,
夹α角的两边之比为 (sin(60+β))/(sin(60+γ))=m/n
△EAF与这三角形相似,
从而 ∠AFE=60°+β ∠AEF=60°+γ
同法可证∠BFD=60°+α,
而 ∠AFB=180°-(α+β)
因此 ∠EFA+∠AFB+∠BFD=(60°+β)+(180°-α-β)+(60°+α)=300°
所以∠DFE=60°.
类似地,△DEF的另两个内角也为60°. 因此△DEF是等边三角形.
BD CD交D
AF BF交F 记A=3α,B=3β,C=3γ,AE=m,AF=n,△ABC的三边长为a、b、c.
由于3α+3β+3γ=180°.
所以α+β+γ=60°.α+β=60°-γ
而nsin(α+β)=csinβ
所以n=csinβ/sin(α+β)=csinβ/sin(60-γ)
类似地m=bsinγ/sin(60-β)
在△ABC中有bsin3γ=csin3β,
从而
m/n
=(sin3β*sinγ*sin(60-γ))/(sin3γ*sinβ*sin(60-β))
=(sin(60+β))/(sin(60+γ))
由于α+β+γ=60°.
所以存在以60°+β,60°+γ和α为内角的三角形,
夹α角的两边之比为 (sin(60+β))/(sin(60+γ))=m/n
△EAF与这三角形相似,
从而 ∠AFE=60°+β ∠AEF=60°+γ
同法可证∠BFD=60°+α,
而 ∠AFB=180°-(α+β)
因此 ∠EFA+∠AFB+∠BFD=(60°+β)+(180°-α-β)+(60°+α)=300°
所以∠DFE=60°.
类似地,△DEF的另两个内角也为60°. 因此△DEF是等边三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一轮船航行于甲乙两港之间,在静水中的航速是m千米/时,水速是12千米/时,则轮船顺水航行5小时与逆水航行4小时的行程相差_千米.
- 2五分之三乘三分之二表示什么
- 3甲乙两堆煤共72吨,甲堆运走5分之4,已堆运走百分之75,所剩的煤正好相等,问甲乙两堆煤原来各有多少吨
- 45个小朋友握手,没俩人一次,一共握几次?
- 5关于立志做人方面的名人名言
- 6求四次方程的求根公式
- 7在三角形ABC中,角BAC等于九十度,延长BA到D使AD等于二分之一AB.点E.F分别为BC,AC的中点 (1)求证DF=BE
- 8简述马克思主义哲学的产生是哲学发展史上的革命变革.
- 9小学作文中简单的纪实作文有哪些类型
- 10the problem is (what we can do/deal with problem)
热门考点