当前位置: > 1.若方程x²+mx+3-m=0的两个根一个大于2,另一个小于2,那么m的取值范围是( )...
题目
1.若方程x²+mx+3-m=0的两个根一个大于2,另一个小于2,那么m的取值范围是( )
A.m>2
B.m<-6
C.m<-7
D不能确定
2.函数y=根号(-3x²+3x+3/2)的最多值为( )
A.9/4
B.-3/2
C.3/2
D不存在
3.方程-x²+5x-2=2/x的正根的个数为( )
A.3 B.2 C.1 D.0

提问时间:2021-03-02

答案
1)利用函数图像,因为y=x²+mx+3-m开口向上,
当x=2时,y<0,即
2^2+2m+3-m<0,解得,
m<-7
选C
2)因为(-3x²+3x+3/2)
=-3(x-1/2)^2-15/4
当x=1/2时,有最大值为-15/4<0
所以函数y=根号(-3x²+3x+3/2)
没有最大值
选D
3)整理方程-x²+5x-2=2/x
2x^2-9x+4=0,
判别式=9^2-4*2*4=49
所以方程有两个不相等的根,
又x1*x2=2,x1+x2=9/2
所以两根为正
所以正根的个数为2
选B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.