当前位置: > 已知{an}的通项公式为an=6n-5,n=2k-1; 4^n n=2k ,求此数列的前n项和Sn...
题目
已知{an}的通项公式为an=6n-5,n=2k-1; 4^n n=2k ,求此数列的前n项和Sn

提问时间:2021-03-01

答案
①当n为偶数设n=2k,说明偶数和奇数的个数都是k个,则有:
sn=(1+7+13+.+6k-5)+(4+4^2+4^3+.+4^k)
=[(1+6k-5)k]/2+4(1-4^k)/(1-4)
=k(3k-2)+(4/3)(4^k-1).
②当n是奇数设n=2k-1.说明偶数项是k-1个,奇数项是k个,则有:
sn=(1+7+13+.+6k-5)+[4+4^2+4^3+.+4^(k-1)]
=[(1+6k-5)k]/2+4[1-4^(k-1)]/(1-4)
=k(3k-2)+(4/3)[4^(k-1)-1].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.