当前位置: > 如图,在RT三角形ABC中,∠C=90,AC=6cm,BC=8cm,点E,F同时由A,B两点出发,分别沿AC,BA方向向点C,B移动...
题目
如图,在RT三角形ABC中,∠C=90,AC=6cm,BC=8cm,点E,F同时由A,B两点出发,分别沿AC,BA方向向点C,B移动
点E的速度是2cm/s,点F的速度是1cm/s,若其中一点到达位置则两点都停止移动
(1)问经过几秒,三角形AEF的面积是16/5
(2)问经过几秒,EF平分rt三角形的周长
(3)是否存在线段EF将rtABC的周长和面积同时平分?若存在 求出此时AE的长,若不存在 说明理由

提问时间:2021-03-01

答案
一、过F点作FG⊥AC;
AC=6,BC=8;∠C=90°;可得AB=10;
可得:AG/AC=(AB-BF)/AB;即AG=0.6(10-BF);
FG/BC=(AB-BF)/AB;即FG=0.8(10-BF);
S△AEF=AG*FG/2=0.24(10-BF)^2;(1)
当S△AEF=16/5时;代入(1)得BF=10-2√30/3;或10+2√30/3(舍去);
由于BG的速度是1cm/秒;所以(10-2√30/3)秒钟(约6.35秒)后S△AEF=16/5;
二、RT△ABC的周长的一半=(AB+AC+BC)/2=(10+6+8)/2=12>AB;
所以E点在AC上延长线上;同样作FG⊥AC;
AE=2BF;
EG=AE-AG=2BF-0.6(10-BF)=2.6BF-6;
EF^2=EG^2+FG^2=(2.6BF-6)^2+(0.8(10-BF))^2;(2)
当EF=12时(RT△ABC的周长的一半);代入(2)
得BF=(√809.6+22)/7.4;约为6.818cm;
即过6.818秒后,EF平分RT△ABC的周长;
三、RT△ABC的周长=24;SRT△ABC=6*8/2=24;
所以EF平分周长时,也平分面积;
此时AE=2BF=(√809.6+22)/3.7;约为12.636cm;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.