当前位置: > 设a、b、c∈[0,2],证明4a+b^2+c^2+abc≥2ab+2bc+2ca...
题目
设a、b、c∈[0,2],证明4a+b^2+c^2+abc≥2ab+2bc+2ca

提问时间:2021-02-24

答案
a、b、c∈[0,2]
所以a(b-2)(c-2)>=0
展开就是 a(bc-2b-2c+4)>=0
4a+abc>=2ac+2bc
又b^2+c^2>=2bc
相加就是4a+b^2+c^2+abc≥2ab+2bc+2ca
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.