题目
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.
(1)若PC=PF,求证:AB⊥ED;
(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?
(1)若PC=PF,求证:AB⊥ED;
(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?
提问时间:2021-02-24
答案
(1)证明:连接OC,∵PC为⊙O的切线,
∴∠OCP=∠FCP+∠OCF=90°,
∵PC=PF,
∴∠PCF=∠PFC,
∵OA=OC,
∴∠OCA=∠OAC,
∵∠CFP=∠AFH,
∴∠AFH+∠OAC=90°,
∴∠AHF=90°,
即:AB⊥ED.
(2)D在劣弧AC的中点时,才能使AD2=DE•DF.
连接AE.若AD2=DE•DF,
可得:△FAD∽△AED,
∴∠FAD=∠DEA,
∴
∴∠OCP=∠FCP+∠OCF=90°,
∵PC=PF,
∴∠PCF=∠PFC,
∵OA=OC,
∴∠OCA=∠OAC,
∵∠CFP=∠AFH,
∴∠AFH+∠OAC=90°,
∴∠AHF=90°,
即:AB⊥ED.
(2)D在劣弧AC的中点时,才能使AD2=DE•DF.
连接AE.若AD2=DE•DF,
可得:△FAD∽△AED,
∴∠FAD=∠DEA,
∴
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译
最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|