当前位置: > 证明:4个连续奇数的积减1能被8整除...
题目
证明:4个连续奇数的积减1能被8整除
PS:太高深的看不懂

提问时间:2021-02-19

答案
简单的代数式变形.
四个连续奇数可以表示为:2n-3,2n-1,2n+1,2n+3,其中n是大于等于2的正整数.
(2n-3)(2n-1)(2n+1)(2n+3)-1=(4n^2-9)(4n^2-1)-1
=16n^4-40n^2+8=8(2n^4-5n^2+1)
这个数是正整数2n^4-5n^2+1的8倍,所以四个连续奇数的积减去1,必能被8整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.