当前位置: > 设函数f(x)=ax2+bx+c(a<0)的定义域为D,若所有点(s,f(t))(s,t∈D)构成一个正方形区域,则a的值为(  ) A.-2 B.-4 C.-8 D.不能确定...
题目
设函数f(x)=
ax2+bx+c
(a<0)
的定义域为D,若所有点(s,f(t))(s,t∈D)构成一个正方形区域,则a的值为(  )
A. -2
B. -4
C. -8
D. 不能确定

提问时间:2021-02-13

答案
由题意可知:所有点(s,f(t))(s,t∈D)构成一个正方形区域,
则对于函数f(x),其定义域的x的长度和值域的长度是相等的,
f(x)的定义域为ax2+bx+c≥0的解集,
设x1、x2是方程ax2+bx+c=0的根,且x1<x2
则定义域的长度为|x1-x2|=
(x1+x2)2−4x1x2
=
b2−4ac
a2

而f(x)的值域为[0,
4ac−b2
4a
],
则有
b2−4ac
a2
4ac−b2
4a

|a|=2
−a
,∴a=-4.
故选B.
此题考查的是二次函数的性质问题.在解答时可以先将问题转化为方程,因为一个方程可以求解一个未知数.至于方程的给出要充分利用好“构成一个正方形区域”的条件.

二次函数的性质.

本题考查的是二次函数的性质问题.在解答的过程当中充分体现了问题转化的思想、解方程的思想以及运算的能力.值得同学们体会反思.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.