题目
数学数列题2道
1.已知数列An的通向公式为An=n*(n+1)
求1/A3+1/A4+1/A5+……1/A99=?(斜杠是分数线) 答案为97/300
2.数列An中,如果任意n都有[A(n+2)-A(n-1)]/[A(n+1)-An]=k,则称An为等差比数列,k称为公差比.下列正确的是
1.等差比数列的公差比一定不为0
2.等差数列一定是等差比数列
3.若An= ,则An是等差比数列
4.若等比数列是等差比数列,则其公比等于公差比 3,4
第一题请写出详细的过程,第二题请逐个分析正误
第二题有些地方打错了
应该是[A(n+2)-A(n+1)]/[A(n+1)-An]=k
3.若An=-(3)^n+2
1.已知数列An的通向公式为An=n*(n+1)
求1/A3+1/A4+1/A5+……1/A99=?(斜杠是分数线) 答案为97/300
2.数列An中,如果任意n都有[A(n+2)-A(n-1)]/[A(n+1)-An]=k,则称An为等差比数列,k称为公差比.下列正确的是
1.等差比数列的公差比一定不为0
2.等差数列一定是等差比数列
3.若An= ,则An是等差比数列
4.若等比数列是等差比数列,则其公比等于公差比 3,4
第一题请写出详细的过程,第二题请逐个分析正误
第二题有些地方打错了
应该是[A(n+2)-A(n+1)]/[A(n+1)-An]=k
3.若An=-(3)^n+2
提问时间:2021-02-12
答案
1
1/3*4 +1/4*% +1/5*^ + ...+ 1/99*100
= 1/3 -1/4 +1/4 - 1/5 +1/5 -1/6 + ...+1/99 -1/100
= 1/3 - 1/100
= 97/300
2 数列An中,如果任意n都有[A(n+2)-A(n-1)]/[A(n+1)-An]=k,有误A(n-1)吗?
1) 反证:如果为0,分子为零,每一项都相等,此时分母为零无意义.
2)等差数列公差为d时,上式的分子分母都等于d,其比值为1,即k=1,因此符合等差比数列的定义,是等差比数列.注意不能是常数列,即不能d=0.
3)题目不全
4)设出公比为q,以a(n+1)与q表示出各项,代入等差比的公式可以得到 k=q
1/3*4 +1/4*% +1/5*^ + ...+ 1/99*100
= 1/3 -1/4 +1/4 - 1/5 +1/5 -1/6 + ...+1/99 -1/100
= 1/3 - 1/100
= 97/300
2 数列An中,如果任意n都有[A(n+2)-A(n-1)]/[A(n+1)-An]=k,有误A(n-1)吗?
1) 反证:如果为0,分子为零,每一项都相等,此时分母为零无意义.
2)等差数列公差为d时,上式的分子分母都等于d,其比值为1,即k=1,因此符合等差比数列的定义,是等差比数列.注意不能是常数列,即不能d=0.
3)题目不全
4)设出公比为q,以a(n+1)与q表示出各项,代入等差比的公式可以得到 k=q
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1修一条路,第一天修了全长的1/4,第二天修了余下的1/5,这时还剩20米,这条路全长多少
- 2体内干细胞的分类及形态总结
- 3一根绳子长1米,先剪下它的一半,再把剩下的剪下一半.剪了4次后,剩下的部分长多少米?
- 4某汽车以12m/s的速度行驶,紧急刹车时的加速度大小是3m/s
- 5还有-3的二次方三次方怎么算?
- 6已知数2的50次方—4的17次方能被60至70之间的两个数整除,这两个数是
- 7已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则m的取值范围是( ) A.(-∞,-16) B.(-∞,16] C.(-∞,-16] D.(4,16)
- 8喷气气球的解释
- 9忆读书 结合课文谈谈冰心是如何做到"读书好,多读书,读好书"的.
- 10实变函数中的Lebesgue点集与可微点集是否有包含关系?我感觉Lebesgue点集包含可微点集,
热门考点