题目
小学六年级数学中的抽屉问题
任意四个自然数,其中至少又两个数的差是3的倍数,为什么?
任意四个自然数,其中至少又两个数的差是3的倍数,为什么?
提问时间:2021-02-08
答案
首先我们弄清楚这样一体规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数.而任何一个自然数被3除的余数,只能是0、1、2这三个数中的一个,根据这三个状况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”.我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数.换句话说,4个自然数分成3类,至少有2个数是同一类.既然是同一类,那么这两个数被3除的余数就一定相同,所以,任意4个自然数,至少有2个自然数的差是3的倍数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点