当前位置: > 设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列....
题目
设{an}与{bn}中一个是收敛数列,另一个是发散数列.证明{an±bn}是发散数列.
又问{anbn}和{an/bn}(bn≠0}是否必为发散数列.

提问时间:2021-02-03

答案
如果{an+bn}收敛
因{an}也收敛
对任何e
都有N1,N2
使k>N1就有 |(ak+bk) - L |k>N2有 |(ak) - A |取k>N1,N2中较大者,有|bk-(L-A) |=|(ak+bk)-L+(ak-A)|< |(ak+bk) - L |+|(ak) - A |可知{bn}也收敛,矛盾!
故{an+bn}发散.
把bn化入-bn可知{an-bn}发散.
{anbn}得看{an}的极限A:如果A=0则收歛,否则发散.
{an/bn}:如果{an}->A=0或{bn}->无限大则收歛,否则发散.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.