当前位置: > 若4边型ABCD的对角线AC,BD相交于点O,且OA=OB=OC=OD=2份之根号2AB,则4边型ABCD是正方型吗?...
题目
若4边型ABCD的对角线AC,BD相交于点O,且OA=OB=OC=OD=2份之根号2AB,则4边型ABCD是正方型吗?
若4边型ABCD的对角线AC,BD相交于点O,且OA=OB=OC=OD=2份之根号2AB,则4边型ABCD是正方型吗?

提问时间:2021-01-31

答案
因为OA=OB=OC=OD,所以四边形是个矩形(对角线互相平分且相等的四边形是矩形) 又因为OA=OB2分之根号2 AB, 所以OA^2+OB^2=(根号2/2 AB)^2+(根号2/2 AB)^2=AB^2 则:AC垂直BD,即四边形是个正方形(对角线...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.