题目
f(x)=1+tanX/1+(tanx)^2,x属于[派/12,派/2],求f(x)取值范围
提问时间:2021-01-29
答案
f(x)=(1+tanX)/(1+tan²x),x属于[π/12,π/2],求f(x)取值范围
f(x)=[1+(sinx/cosx)]/sec²x=(cosx+sinx)/secx=(cosx+sinx)cosx
=(√2)sin(x+π/4)cosx=(√2)×(1/2)[sin(π/4)+sin(2x+π/4)]
=(√2/2)[(√2/2)+sin(2x+π/4)]=(1/2)+(√2/2)sin(2x+π/4)
故在区间[π/12,π/2]内,maxf(x)=f(π/8)=(1/2)+(√2/2)sin(π/2)=(1/2)(1+√2);
minf(x)=f(π/2)=(1/2)+(√2/2)sin(π+π/4)=(1/2)-(√2/2)sin(π/4)=1/2-1/2=0
即值域为[0,(1/2)(1+√2)]
f(x)=[1+(sinx/cosx)]/sec²x=(cosx+sinx)/secx=(cosx+sinx)cosx
=(√2)sin(x+π/4)cosx=(√2)×(1/2)[sin(π/4)+sin(2x+π/4)]
=(√2/2)[(√2/2)+sin(2x+π/4)]=(1/2)+(√2/2)sin(2x+π/4)
故在区间[π/12,π/2]内,maxf(x)=f(π/8)=(1/2)+(√2/2)sin(π/2)=(1/2)(1+√2);
minf(x)=f(π/2)=(1/2)+(√2/2)sin(π+π/4)=(1/2)-(√2/2)sin(π/4)=1/2-1/2=0
即值域为[0,(1/2)(1+√2)]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1others和the others的区别
- 2两分钟双声道16位采样位数,22.05hz采样频率声音的不压缩数据量是?请问这个怎么计算
- 3一个正方体的棱长总和是48cm,它的表面积是( )体积是( )cm的三次方.
- 4一个长方体的高减少2厘米后成为一个正方体,那么表面积就减少48平方厘米,这个正方体的体积是( )立方厘米. A.216 B.96 C.288 D.72
- 5英语翻译
- 6小明看一本书,已经看好480页,比剩下的多60%.这本书共多少页?
- 7《名人传》中写了哪三个人?
- 8湿纱布结冰后周围温度是否改变?
- 9小军,小红,小平3个人下象棋,每两个人一盘,总共下了3盘他们各下了几盘棋
- 10they have school trip is September 4th.哪里错了?