题目
1/3=0.33333……(3循环)
2/3=0.66666……(6循环)
而1/3+2/3=1
但是等量的 0.3333……+0.6666……=0.9999……(9循环)
永远不会等于1,为什么呢?
2/3=0.66666……(6循环)
而1/3+2/3=1
但是等量的 0.3333……+0.6666……=0.9999……(9循环)
永远不会等于1,为什么呢?
提问时间:2021-01-27
答案
这是一道非常著名的问题.我想肯定有人会说不相等.但请相信我和那些说它们相等的同志,他们的的确确是相等的.
证明的方法有很多:
第一种,最简单的:
设x=0.9999999999999……,那么10x=9.99999999999……,得到
10x-x=9
得x=1
第二种,也很简单的:
设x=0.999999999999……,那么x/3=0.333333333333……=1/3,得
x/3=1/3
x=1
第三种,稍微要绕一点脑筋:
你用竖式计算1除以1(竖式应该会吧,小学学过的),不同的是一开始不要直接商1,而要商0,那么余数是1,添加一个0变成10,然后商9,10-9=1,又得到余数是1,再按照上面的方法进行计算,就会算出来1/1=0.9999999……
第四种,可以用极限来做:
等比数列的求和公式是[a1(1-q^n)]/(1-q),那么当q无穷大的时候,这个式子的极限就是a1/(1-q).由于循环小数0.aaaaaaaaa……=a/10+a/100+a/1000+a/10000+……,它的每一个加数刚好构成一个无穷的等比数列,而且q=1/10,那么就可以用a1/(1-q)计算0.99999999……,此时a1=0.9,q=1/10,很容易就可以得到0.9999999999……=0.9/(1-1/10)=1
以上就是常见的证明0.99999999999……=1的方法.方法还有很多种.最后结果都是:0.999999999……=1.
另外,我还可以明确地告诉你,以上的推理过程都是比较严密的,不要相信所谓的0.3333333333……只是约等于1/3,0.9999999999……
证明的方法有很多:
第一种,最简单的:
设x=0.9999999999999……,那么10x=9.99999999999……,得到
10x-x=9
得x=1
第二种,也很简单的:
设x=0.999999999999……,那么x/3=0.333333333333……=1/3,得
x/3=1/3
x=1
第三种,稍微要绕一点脑筋:
你用竖式计算1除以1(竖式应该会吧,小学学过的),不同的是一开始不要直接商1,而要商0,那么余数是1,添加一个0变成10,然后商9,10-9=1,又得到余数是1,再按照上面的方法进行计算,就会算出来1/1=0.9999999……
第四种,可以用极限来做:
等比数列的求和公式是[a1(1-q^n)]/(1-q),那么当q无穷大的时候,这个式子的极限就是a1/(1-q).由于循环小数0.aaaaaaaaa……=a/10+a/100+a/1000+a/10000+……,它的每一个加数刚好构成一个无穷的等比数列,而且q=1/10,那么就可以用a1/(1-q)计算0.99999999……,此时a1=0.9,q=1/10,很容易就可以得到0.9999999999……=0.9/(1-1/10)=1
以上就是常见的证明0.99999999999……=1的方法.方法还有很多种.最后结果都是:0.999999999……=1.
另外,我还可以明确地告诉你,以上的推理过程都是比较严密的,不要相信所谓的0.3333333333……只是约等于1/3,0.9999999999……
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1金星在大距时中心掩过一颗恒星.请计算掩星的持续时间.金星和地球的轨道可看为圆轨道.
- 2空气密度一般计算取多少?
- 3核糖与核糖核酸的区别
- 4在图形平移中,下面说法中错误的是( ) A.图形上每一点移动的方向相同 B.图形上每一点移动的距离相等 C.图形上对应两点的连线的长度不变 D.图形上可能存在不动点
- 5x^2-x-20等于多少?
- 6谁能证明曲线的拐点
- 7talk about sth.on the
- 8填跟艺术有关的四字词语
- 9按一定的规律排列的一列数依次为二分之一,三分之一,十分之一,十五分之一,二十六分之一,三十五分之一.按此规律排列下去,这列数的第七个数是?
- 10自然灾害与防治的主要类型有哪些?包括类型、原因、危害及防御措施
热门考点