题目
四棱锥 S-ABCD 底面ABCD为正方形,侧棱SD垂直底面 E,F为AB SC 中点 设SD=2DC,求2面角A-EF-D大小
提问时间:2021-01-24
答案
取SD中点G,连接FG和AG,则FG//DC,且FG=1/2CD.
∵AB//CD且AE=1/2AB
∴FG//AE且FG=AE.
∴四边形AEFG为平行四边形.
∴点G在平面AEF上.过D作DH使DH⊥AG于H.
∵SD⊥面ABCD.
∴SD⊥AB
又AB⊥AD
∴AB⊥面ADS
∴ AB⊥DH,AB⊥AG.
则DH⊥面AEFG.且平行四边形AEFG为矩形.
过H作HO⊥EF,连接DO,
则∠HOD即为二面角A-EF-D所对应的平面角.
tan∠HOD=DH/OH.
∵HO⊥EF
∴HO=AE.
设CD=a,则SD=2a,AB=AD=CD=a,
∴ DG=1/2SD=a.HO=AE=1/2AB=1/2a.
在RT∆ADG中,可得HD=√2/2a
∴tan∠HOD=DH/OH=√2.
即二面角A-EF-D的正切值为√2.
∵AB//CD且AE=1/2AB
∴FG//AE且FG=AE.
∴四边形AEFG为平行四边形.
∴点G在平面AEF上.过D作DH使DH⊥AG于H.
∵SD⊥面ABCD.
∴SD⊥AB
又AB⊥AD
∴AB⊥面ADS
∴ AB⊥DH,AB⊥AG.
则DH⊥面AEFG.且平行四边形AEFG为矩形.
过H作HO⊥EF,连接DO,
则∠HOD即为二面角A-EF-D所对应的平面角.
tan∠HOD=DH/OH.
∵HO⊥EF
∴HO=AE.
设CD=a,则SD=2a,AB=AD=CD=a,
∴ DG=1/2SD=a.HO=AE=1/2AB=1/2a.
在RT∆ADG中,可得HD=√2/2a
∴tan∠HOD=DH/OH=√2.
即二面角A-EF-D的正切值为√2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 17.夏朝建立于约公元前2070年,这一年属于( ). A.21世纪70年代 B.公元前21世纪70年代 C.公元前20世
- 2如图所示,带支架的平板小车沿水平面向左做直线运动,小球A用细线悬挂于支架前端,质量为m的物块B始终相对于小车静止地摆放在右端(B与小车间的动摩擦因数为μ).某时刻观察到细线偏
- 3我期待的节日:A.the festival I look forward B.I look forward to the festival
- 4A和B都是高度为10厘米的圆柱形容器(如图所示),底面半径分别为1厘米和2厘米.一水龙头单独向A注水,用了1分钟可以注满,现将两容器在它们高度一半处用一个细管连通(连通管的容积
- 5关于某个装水容器内投入物体后,容器对桌面的压力问题
- 6对于任意实数x,试比较两代数式3x3-2x2-4x+1与3x3+4x+10的值的大小.
- 7fare against什么意思
- 8{4f+g=15 {3g-4f=-3 是一个方程
- 9受控源是否有电阻,为什么?
- 10试就m的值讨论直线x-my+2=0和圆x^2+y^2=4的关系