当前位置: > 高一立体几何--难题-求助...
题目
高一立体几何--难题-求助
平面ABCD⊥平面ABEF.ABCD是正方形,ABEF是矩形,且AF=二分之一AD=A,G是EF的中点.(AB是两平面相交直线,连接了AC,GC,BC)
①求证:平面AGC⊥平面BGC.
②求GB与平面AGC所成角的正弦值.

提问时间:2021-01-18

答案
①CB⊥平面ABEF,∴CB⊥AG.
又∵AG⊥GB,AG⊥平面BGC,∴平面AGC⊥平面BGC.
②过B做GC的垂线,垂足为H.
由上问结论,平面AGC⊥平面BGC,得AG⊥BH
又BH⊥GC,∴BH⊥平面AGC.角BGC为BG与平面AGC所成角.
sin(角BGC)=BC/GC=2/根号6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.