题目
三角形外接园与内接圆半径与三边边长的关系
提问时间:2021-01-18
答案
1.外接圆半径R:
根据正弦定理以及余弦定理:
a/sinA=b/sinB=c/sinC=2R
a2=2bc•cosA
可得:
cosA=(b2+c2-a2)/2bc
∵ sin2A+cos2A=1,∠A∈(0,180°)
∴ sinA=√(1-cos2A)
=√[(a2+b2+c2)2—2(a4+b4+c4)] / (2bc)
代入正弦定理a/sinA=2R,得:
R=2abc /√[(a2+b2+c2)2—2(a4+b4+c4)]
(三角形外接圆半径与三边边长、面积的关系可推导得:R=abc/4S)
2.内接圆半径r:
∵ r=2S/(a+b+c) (S是三角形面积)
且根据众所周知的秦九韶—海伦公式,
S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2
∴ r=2√[p(p-a)(p-b)(p-c)] /(a+b+c)
3.三角形外接圆半径、内接圆半径与三边边长的关系可表示为:
R*r=(abc/4S)*[2S/(a+b+c)]=abc/2(a+b+c)
说明:
外接圆半径是指三角形三条边的垂直平分线(中垂线)的交点到三个顶点的距离;
内接圆半径是指三角形三条边上的高线的交点到三条边的距离.
根据正弦定理以及余弦定理:
a/sinA=b/sinB=c/sinC=2R
a2=2bc•cosA
可得:
cosA=(b2+c2-a2)/2bc
∵ sin2A+cos2A=1,∠A∈(0,180°)
∴ sinA=√(1-cos2A)
=√[(a2+b2+c2)2—2(a4+b4+c4)] / (2bc)
代入正弦定理a/sinA=2R,得:
R=2abc /√[(a2+b2+c2)2—2(a4+b4+c4)]
(三角形外接圆半径与三边边长、面积的关系可推导得:R=abc/4S)
2.内接圆半径r:
∵ r=2S/(a+b+c) (S是三角形面积)
且根据众所周知的秦九韶—海伦公式,
S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2
∴ r=2√[p(p-a)(p-b)(p-c)] /(a+b+c)
3.三角形外接圆半径、内接圆半径与三边边长的关系可表示为:
R*r=(abc/4S)*[2S/(a+b+c)]=abc/2(a+b+c)
说明:
外接圆半径是指三角形三条边的垂直平分线(中垂线)的交点到三个顶点的距离;
内接圆半径是指三角形三条边上的高线的交点到三条边的距离.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一个数的立方根恰好等于这个数的算术平方根的一半,那么这个数是_.
- 2小小明以5千米每小时的速度从A地到B地共用45分钟,则AB两地的距离为多少?
- 3从哲学角度回答
- 4口甲哺 怎么读?(口甲 是一个字)
- 5我眼中的风景,记叙文,
- 6按规律在括号里填数1,8,57,64,( ),( )
- 7久闻昙花只开一夕,是最初一夜,也是最后一夜,充满生命奋发与无常的哲理,便决心迎接他这一句话的理解
- 8有关诚信的名言_________,言而有信.
- 9这道算术题我不知道错在哪里,
- 10用3、8、4、5和五个0,写出适合下面条件的数.(1)最小的九位数多少?最大的九位数是多少?(2)只读一个零的最大九位数是多少?(3)一个零也不读出来的九位数是多少?
热门考点