题目
△ABC的内角A,B,C所对的边分别为a,b,c,且acosB-bcosA=
3 |
5 |
提问时间:2021-01-15
答案
∵a=2RsinA,b=2RsinB,c=2RsinC,
∴2RsinAcosB-2RsinBcosA=
2RsinC,
即sinAcosB-sinBcosA=
sinC,①
∵sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB,②
将②代入①中,整理得sinAcosB=4cosAsinB,
∴
=4•
,
即tanA=4tanB;
∵tan(A-B)=
=
=
≤
∴2RsinAcosB-2RsinBcosA=
3 |
5 |
即sinAcosB-sinBcosA=
3 |
5 |
∵sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB,②
将②代入①中,整理得sinAcosB=4cosAsinB,
∴
sinA |
cosA |
sinB |
cosB |
即tanA=4tanB;
∵tan(A-B)=
tanA−tanB |
1+tanAtanB |
3tanB |
1+4tan2B |
3 | ||
|
3 | |
2
|