当前位置: > 如图,抛物线y=ax2-2x+3(a≠0)与x轴交于A、B两点,与y轴交于C点,B(1,0). (1)求抛物线的解析式; (2)点P是线段AB上的动点,过P作PD∥AC,交BC于D,连结PC,当△PC...
题目
如图,抛物线y=ax2-2x+3(a≠0)与x轴交于A、B两点,与y轴交于C点,B(1,0).

(1)求抛物线的解析式;
(2)点P是线段AB上的动点,过P作PD∥AC,交BC于D,连结PC,当△PCD面积最大时.
①求点P的坐标;
②在直线AC上是否存在点Q,使得△PBQ是等腰三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

提问时间:2021-01-15

答案
(1)∵抛物线y=ax2-2x+3过B(1,0),
∴0=a-2+3,
∴a=-1,
即抛物线的解析式为y=-x2-2x+3;              …(3分)
(2)①过D作DE⊥x轴于E,
设P(m,0),则PB=1-m,
由(1)可知C(0,3)A(-3,0),
∴OC=3  AB=4,
∵PD∥AC,
∴△PDB∽△ACB,
DE
CO
=
BP
BA

DE
3
=
1−m
4

∴DE=
3
4
(1-m),…(5分)
∴S△PCD=S△PBC-S△PBD
=
1
2
PB•OC-
1
2
PB•DE,
=
1
2
(1-m)•3-
1
2
(1-m)•
3
4
(1-m),
=-
3
8
(m+1)2+
3
2

∵-3≤m≤1,
∴当m=-1时  S△PCD有最大值
3
2

∴P(-1,0);…(8分)
②在直线AC上是存在点Q,使得△PBQ是等腰三角形,理由如下:
法一:∵P(-1,0)、B(1,0),
∴PB=2,OP=OB,
∴CP=CB,
当QP=QB时,∴Q与C重合  即Q(0,3)…(9分)
∵OA=OC=3,
∴△OAC是等腰三角形,
∵AB=4∴点B到直线AC的距离为AB•sin45°=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.