当前位置: > 已知x^2-kx-2k^2+9k-9=0(k为常数),是否存在整数k,使得方程的实数根均小于1?...
题目
已知x^2-kx-2k^2+9k-9=0(k为常数),是否存在整数k,使得方程的实数根均小于1?

提问时间:2021-01-12

答案
x^2-kx-2k^2+9k-9=0(k为常数)
该一元二次方程二次项系数a=1,一次项系数b=-k,常数项c=-2k^2+9k-9
所以b^2-4ac=(-k)^2-4*1*(-2k^2+9k-9)=k^2+8k^2-36k+36=9k^2-36k+36=(3k-6)^2
解得:x=[-b+-根号(b^2-4ac)]/2a=[k+-根号(3k-6)^2]/2
所以x1=[k+(3k-6)]/2=(4k-6)/2=2k-3,x2=[k-(3k-6)]/2=(6-2k)/2=3-k
@@@无论(3k-6)大于0还是小于0,都是这两个根@@@
若方程的实数根均小于1,则2k-3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.