题目
利用limx →∞(1+1/n)^n=e,求下列极限:(1)limx→∞(1-3/n)^n
(2)limx→∞(1+1/2n)^3n;(3)limx→∞(1-1/n^2)^n,
(2)limx→∞(1+1/2n)^3n;(3)limx→∞(1-1/n^2)^n,
提问时间:2021-01-11
答案
用A表示limx →∞,则:
(1)A[(1-3/n)^n]=A[(1+(-3/n)]^(-n/3)]^(-3)=e^(-3)
(2)A[(1+1/2n)^3n]=A(1+1/2n)^2n]^(3/2)=e^(3/2)
(3)A[(1-1/n^2)^n]=A[(1-1/n)^n]*A(1+1/n)^n]=e^(1-)*e^n=e^0=1
(1)A[(1-3/n)^n]=A[(1+(-3/n)]^(-n/3)]^(-3)=e^(-3)
(2)A[(1+1/2n)^3n]=A(1+1/2n)^2n]^(3/2)=e^(3/2)
(3)A[(1-1/n^2)^n]=A[(1-1/n)^n]*A(1+1/n)^n]=e^(1-)*e^n=e^0=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点