题目
关于数列的数学题,
1.已知{An}是各项为不同的正数的等差数列,Lga1、Lga2、Lga4成等差数列,又Bn=1/a2^n(此处2的n次方为a的脚标),n=1、2、3… (1)证明{Bn}是等比数列.(2)如果数列{Bn}前3项和为7/24,求数列{An}的首项a1和公差d.
1.已知{An}是各项为不同的正数的等差数列,Lga1、Lga2、Lga4成等差数列,又Bn=1/a2^n(此处2的n次方为a的脚标),n=1、2、3… (1)证明{Bn}是等比数列.(2)如果数列{Bn}前3项和为7/24,求数列{An}的首项a1和公差d.
提问时间:2021-01-10
答案
(1)、An=a1+(n-1)d,a1=a1,a2=a1+d,a3=a1+3d,2Lga2=Lga1 + Lga4
2Lg(a1+d)=Lga1 + Lg(a1+3d),Lg(a1+d)^2=Lg[a1*(a1+3d)],a1^2+2*a1*d+d^2=a1^2+3*a1*d
d=0或者d=a1,但是an各项不同,所以d=a1不等于0.An=a1+(n-1)d=n*a1
Bn=1/a2^n=1/[(2^n)*a1],Bn-1=1/[(2的n-1次)*a1],Bn除以Bn-1=[(2的n-1次)*a1]/[(2^n)*a1]=1/2.等比数列
(2)、B1+B2+B3=1/a2+1/a4+1/a8=1/(2a1)+1/(4a1)+1/(8a1)=7/24,a1=3=d
2Lg(a1+d)=Lga1 + Lg(a1+3d),Lg(a1+d)^2=Lg[a1*(a1+3d)],a1^2+2*a1*d+d^2=a1^2+3*a1*d
d=0或者d=a1,但是an各项不同,所以d=a1不等于0.An=a1+(n-1)d=n*a1
Bn=1/a2^n=1/[(2^n)*a1],Bn-1=1/[(2的n-1次)*a1],Bn除以Bn-1=[(2的n-1次)*a1]/[(2^n)*a1]=1/2.等比数列
(2)、B1+B2+B3=1/a2+1/a4+1/a8=1/(2a1)+1/(4a1)+1/(8a1)=7/24,a1=3=d
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1关于 英语形容词做状语的问题:
- 2用一成语概括随风濳入夜,润物细无声
- 3把下列每组中的分数按照从小到大的顺序排列起来:20分之13、10分之7和5分之4、12分之11、18分之7、6分之5
- 4n阶行列式D=/Aij/的任意一列(行)各元素与另一列(行)对应元素的代数余子式的乘积之和等于零.如何证明
- 5键线式 结构简式 区别
- 6有1张长方形白纸,长1.36米,宽0.8米,要剪成同样大小的正方形,并使它们的面积尽可能的大,
- 7启智小学招收一年级新生其中男生150人,男生与女生的比是5:4,
- 8黎明计划大概是什么意思
- 9甲商品的定价中含百分之30的利润,乙商品的定价中含百分之25的利润,甲乙两种商品的定价相加是480元,甲的定价比乙的高40元,甲乙两种商品的成本各是多少元?
- 10“薯条”用英语怎么说?