当前位置: > 圆锥曲线的最值问题(用极坐标求解)...
题目
圆锥曲线的最值问题(用极坐标求解)
已知椭圆中心为O,长轴、短轴分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA⊥OB.
求△AOB面积的最大值和最小值.

提问时间:2021-01-10

答案
设OA长为r1,OB长为r2,OA角为?,则A,B的坐标分别为(r1cos?,r1sin?),(-r2sin?,r2cos?).分别代入椭圆方程,两式相加得:1/(r1)^2+1/(r2)^2=1/a^2+1/b^2 为定值 .欲求AOB的面积的极值,就是使r1*r2取最值,即使1/r1r2取最值,...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.