当前位置: > 用展开泰勒公式证明不等式...
题目
用展开泰勒公式证明不等式
设f(x)在[0,1]上具有二阶导数,且满足f(x)的绝对值≤a,f''(x)的绝对值≤b,其中a>=0,b>=0.证明对于任意x∈(0,1),有f'(x)的绝对值≤2a+b/2

提问时间:2021-01-09

答案
f(1)=f(x)+f'(x)(1-x)+1/2*f''(x0)(1-x)^2 ,x0介于1和x之间f(0)=f(x)+f'(x)(0-x)+1/2*f''(x1)(0-x)^2 ,x1介于0和x之间所以f(1)-f(0)=f'(x)+1/2*f''(x0)(1-x)^2-1/2*f''(x1) x^2 所以|f'(x)|≤|f(1)|+|f(0)|+1/2*|f...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.