当前位置: > 平面过z轴,且与2x+y-根号5z=0夹角为三分之π,求该平面方程...
题目
平面过z轴,且与2x+y-根号5z=0夹角为三分之π,求该平面方程

提问时间:2021-01-07

答案
设平面方程为 Ax+By=0 ,法向量 n1=(A,B,0) ,
已知平面的法向量为 n2=(2,1,-√5) ,
所以两平面的夹角的余弦为 cosa=n1*n2/(|n1|*|n2|)=(2A+B)/[√(A^2+B^2)*√(4+1+5)]=±1/2 ,
化简得 (2A+B)^2=5(A^2+B^2) ,
整理得 A^2-4AB+4B^2=0 ,
因此 (A-2B)^2=0 ,
所以 A=2B ,
取 A=2 ,B=1 可得所求平面方程为 2x+y=0 .
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.