当前位置: > 已知函数f(x)=ax+b/x+c(a、b、c是常数)是奇函数,且满足f(1)=5/2,f(2)=17/4,求此函数的单调区间...
题目
已知函数f(x)=ax+b/x+c(a、b、c是常数)是奇函数,且满足f(1)=5/2,f(2)=17/4,求此函数的单调区间

提问时间:2021-01-06

答案
因为函数f(x)=ax+b/x+c(a、b、c是常数)是奇函数
必然有 c=0
又 f(1)=5/2,f(2)=17/4
所以a+b=5/2
2a+b/2=17/4
得a=2 b=1/2
所以 f(x)=2x+1/2x 即函数为对勾函数
当2x=1/2x 时 4x²=1 即x=正负1/4
因此(-无穷,-1/4)(1/4,+无穷)为增函数
(-1/4,0)(0,1/4)为减函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.