当前位置: > 求证:在周长一定的矩形中正方形面积最大....
题目
求证:在周长一定的矩形中正方形面积最大.

提问时间:2021-01-06

答案
证明:设周长为定植a,矩形的长为x,则宽为a/2-x
所以面积s=x(a/2-x)=-x^2+(a/2)x=-(x-a/4)^2+a^2/16
此为关于x的二次函数当x=a/4时面积最大,最大面积为a^2/16
而x=a/4时,长、宽相等,即矩形为正方形时面积最大.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.