题目
如图,点M、N分别在正方形ABCD的边BC、CD上,已知△MCN的周长等于正方形ABCD周长的一半,则∠MAN=______.
提问时间:2021-01-04
答案
把△ADN绕着点A按顺时针方向旋转90°后,得到△ABE,
∴AE=AN,BE=DN,∠ABE=∠D=90°,∠NAE=90°,
而∠ABC=90°,
∴点M、B、E共线,
∴ME=BE+BM=DN+BM,
∵△MCN的周长等于正方形ABCD周长的一半,
∴MN+NC+MC=DC+BC=DN+NC+MC+BM,
∴MN=DN+BM,
∴MN=ME,
在△MAN和△MAE中,
,
∴△MAN≌△MAE(SSS),
∴∠NAM=∠EAM,
∴∠MAN=
∠NAE=45°.
故答案为45°.
∴AE=AN,BE=DN,∠ABE=∠D=90°,∠NAE=90°,
而∠ABC=90°,
∴点M、B、E共线,
∴ME=BE+BM=DN+BM,
∵△MCN的周长等于正方形ABCD周长的一半,
∴MN+NC+MC=DC+BC=DN+NC+MC+BM,
∴MN=DN+BM,
∴MN=ME,
在△MAN和△MAE中,
|
∴△MAN≌△MAE(SSS),
∴∠NAM=∠EAM,
∴∠MAN=
1 |
2 |
故答案为45°.
把△ADN绕着点A按顺时针方向旋转90°后,得到△ABE,根据旋转的性质得到AE=AN,BE=DN,∠ABE=∠D=90°,∠NAE=90°,由∠ABC=90°得到点M、B、E共线,则ME=BE+BM=DN+BM,再利用△MCN的周长等于正方形ABCD周长的一半可得到MN=DN+BM,然后根据“SSS”可证明△MAN≌△MAE,则∠NAM=∠EAM,于是可计算出∠MAN=
∠NAE=45°.
1 |
2 |
旋转的性质;全等三角形的判定与性质;正方形的性质.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质以及正方形的性质.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1已知ab=3,求10a²√ab×5√b/a÷15√a/b
- 2试求三直线ax+y+1=0,x+ay+1=0,x+y+a=0构成三角形的条件.
- 31.客车和吉普车分别以每小时50千米和60千米的速度同时从甲乙两地相对开出,两车相遇时,客车行驶了325千米.甲乙两地相聚多少千米?
- 4翻译:march across
- 5我们希望定一个带厨房的房间,这样我们自己做饭可以省些钱.
- 6六年级数学题(不等式组)
- 7实验室需要0.1mol/L氢氧化钠溶液500mL,现有5mol/L氢氧化钠溶液,计算所需5mol/L氢氧化钠溶液的体积
- 81,冬天,室外冰冻的衣服干了 2,夏天打开电风扇为什么有凉爽的感觉,需要详细说明
- 9用四字词形容鲁迅的三种精神
- 10SO2通入苯酚钠与CO2通入苯酚钠有什么区别?为什么?
热门考点